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Benefit to the Program

= This research project guantifies relationships between
fluid flow, heterogeneity, and reaction rates specific to
carbon storage in carbonate reservoirs by integrating
characterization, solution chemistry, and simulation data.

= This project meets the Carbon Storage Program goals
to develop technologies that will support industries’
ability to predict CO, storage capacity in geologic
formations to within =30 percent.
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Project Overview
Goals and Objectives

= The goal of this project is to calibrate key parameters in
reactive transport models that will be used to predict final
storage of CO, in carbonate EOR fields.

= This project will advance science-based forecasting for
the transition of CO, — EOR operations to storage sites.

= Success is tied to the ability to scale reactive-flow and
transport parameters over a range of carbonate rock
types and permeability.
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Technical Status

The research scope consists of three major tasks:

> Model calibration against existing experimental database of carbonate
rocks from Midale-Weyburn Carbon Storage Project

>  Smith M, Sholokhova Y, Hao Y, and Carroll S, 2012, Evaporite caprock integrity: An experimental study of
reactive mineralogy and pore-scale heterogeneity during brine—CO, exposure. Env Sci & Technol,
doi:es3012723.

»  Carroll S, Hao Y, Smith M, Sholokhova Y, 2013, Development of scaling parameters to describe CO,-
carbonate-rock interactions for the Marly Dolostone and Vuggy Limestone, Int J Greenhouse Gas Control,
doi:10.1016/j.ijggc.2012.12.026

»  Smith M, Sholokhova Y, Hao Y, and Carroll S. (2013) CO,-Induced Dissolution of Low Permeability Carbonates
Part I. Characterization and Experiments, Adv Water Res, revised.

» HaoY, Smith M, Sholokhova Y, and Carroll S. (2013) CO,-Induced Dissolution of Low Permeability Carbonates
Part 2: Numerical Modeling of Experiments, Adv Water Res, revised.

> Study of a wider permeability range using cores from the
Wellington, KS, CO, demonstration site (focus of presentation)

> Refined model and parameter scaling towards predicting changes in
reservoir porosity and permeability
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Motivation behind choices of characterization
techniques and experimental scales

d Geochemical mineral-fluid interactions induced by CO, injection have a major effect
on rock porosity and permeability evolution, which may potentially alter the behavior
or performance of CO, geological storage and EOR operations;

O The mineral dissolution/precipitation and associated flow and reactive transport
processes in porous media are described at different scales;

Pore (microscopic) scale ~ um Core (laboratory) scale ~ cm Large (reservoir/field) scale ~ km

[ Reactive transport modeling represents a critical component in assessment of
geochemical impact of CO, water-rock interactions;

O However, alack of proper calibration or upscaling of the effective
macroscopic parameters over large field-scales hinders accurate
reactive-transport modeling of CO, fate and transport.
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Wellington, Kansas flow unlt model & samples
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Wellington, KS, samples extend permeability range
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Subcores exhibit lower permeability compared
to well log data — larger samples are better
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Core-flood set-up adapted for new KS samples

* 60°C temp, 25 MPa confining pressure
« constant flowrate 0.05 mL/min

e 1.1m NaCl brine with pCO, = 3 MPa,
at carbonate equilibrium

Gﬁ) dual-piston
Dl T pump
‘i’
P
back- _QID @
pressure a "
regulator
fluid |
outlet avd
AMg, Ca, {(\"I_‘H/ brine/CO, 4
CO,, etc. mixer vessel |

syringe
pump A
(H,0)

reactor
vessel




Brine-CO, exposure caused little change
to properties of Simpson sandstone sample
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Within larger samples, (macro)pore clusters
Isolated by finer-grained matrix material

Connected macro-pores,
large deep injection zone sample

Dolomite sample, fine- gralned and Iarge rhombs
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Reactive transport model adaptations

for CO, core flooding experiments

J  3-D continuum-scale reactive transport model (NUFT)

d CO,-equilibrated brine with pCO, = 3 MPa injected
Into core sample at a constant 0.05 mL/min rate.

(J  Handles either core size (15, 38-mm diameter).

J  Model lateral boundaries kept impermeable; grid size = 0.5 mm
constant pressure and flux conditions imposed at
top and bottom boundaries.

impermeable boundary

constantpressure
atoutlet

constant flux
atinlet

i

model domain

Dolomite + 2H* = Ca?* + Mg?* + 2 HCOy

(] Dolomite reaction kinetics

CO,(ag) + H,0 = H* + HCO;

_E 4 l_ 1 _Ensurmf l_ 1 ¢ - b +
din | oes1se TR [T 298.15&'] % 298.15K R [T 298.15&'] T MgHCO;* = Mg + HCOg4
— =S|k e oy + A ’ |1——
dt ceeid H neuiral -. K|
' ' CaCO,(aq) + H* = Ca2* + HCOy
J  Utilizes nonlinear porosity—permeability correlation CaHCO,* = Ca?* + HCOy

and surface area—porosity relationship
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Important lessons from previous Weyburn results
carried forward in new simulations

L Chemical Model — Experiments allow combined reactivity to be calibrated
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» Rate equations are tied to equilibrium

» Literature equilibrium constants provide starting points
» Calibrations combine rate constants and surface areas

» Pressure changes are not sensitive to reaction rate

L Porosity — Permeability — Surface Area Relationships
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» Change surface area in proportion to ¢ g (i} (ﬁ}
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» “n” and permeability contrast terms allow for ke 4, "
coupled porosity, permeability evolution =Rl
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Imaging-based characterization data scaled
into larger model grids

1  Effective porosity and mineral phase volume fraction were calculated by a volumetric

averaging approach. N N
p=> 4, /N 0= 0, /N

J  Permeability distributions were estimated by assessing macro-pore distribution and
connectivity. Two porous regions were assumed within the rock sample: one representing
interconnected macro-pore regions, and the other the less porous matrix.

| -“ﬁg%ﬁ:[;;;-'.::_‘..- ! L R
macro-pore continuum grid initial model
connectivity representation porosity
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Pre-experiment modeling results — Base Case

O flow rate = 0.05 mL/min, ! l
porosity-permeability relation n = 6, ‘ ‘
permeability contrast K,/K, = 100,

25 % = 1032 molim?/s,
}:‘_298.155{: 10-7.5 moI/m2/s.
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Sensitivity studies —
Increasing permeability contrast by 10x

Porosity distributions after CO, flooding of 120 hours (5 days)
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Sensitivity studies — decreasing kinetic constants
by 100x (acid) and 10x (neutral mechanism)

Porosity distributions after CO, flooding of 120 hours (5 days)
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Sensitivity studies — decreasing
porosity-permeability relation (n) from 6 to 3

Porosity distributions after CO, flooding of 120 hours (5 days)
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Accomplishments to Date

L Publication of results of low permeability caprock response to CO, exposure
(Smith et al., 2012, ES&T)

L Weyburn-specific model and scaling results published in special issue
(Carroll et al., 2013, 1IJGGC)

L Development of model methodology to incorporate varying scales of
characterization data to be published (Hao et al., in final revision, AWR)

O Additional samples from Arbuckle reservoir (Wellington, KS, KGS) acquired,
iImaged via CT, and characterized

O One full-length Simpson (Wellington, KS) experiment completed; Results of
eight Weyburn experiments to be published (Smith et al., in final revision, AWR)

O Equipment modified to accept larger core samples
(first larger-scale core to be tested September 2013)

O Pre-experimental modeling completed to inform upcoming experiments
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Project Summary
Implications for reservoir scale CCUS simulations

Wellington, KS, dolomite

1]

d Key Findings
» Anisotropic permeability and mineral dissolution

play dominant roles in porosity and permeability
changes that will occur during CCUS operations

» Calibrated several reactive transport parameters
that scale from microns to centimeters

» Porosity — Permeability relationships are dependent
on sample heterogeneity

» pore regions are not well connected
at previous core scales

O Future Plans: Refining the reactive-transport model,
calibrating NMR well logs with experiments from the
Wellington, KS, CO, demonstration site
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Appendix

* Organizational Chart
o Gantt Chart
 Bibliography
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Organization Chart
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Gantt Chart: Task 5 Carbonates

Fiscal Year 2012

Fiscal Year 2013

Fiscal Year 2014

Q1/0Q2|/Q3/0Q4|0Q1/0Q2/0Q3/0Q4|0Q1/0Q2|Q3|0Q4
5.1.1 Finish model calibration with Weyburn data
||5.1.2 Finish premodel simulations for new experiments
||5.1.3 Refine model using new data
||5.1.1 Experimental Design
||5.2.2 Conduct experiments
||5.2.3 Interpret experimental results
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